2

4

6

8

A MATHS SELF TEST - with answers

 $\log(a \cdot b) = \log(a) \cdot \log(b)$

 $\log(e^x) = x \cdot \log(e)$ $\ln(2^{x+2}) = x + 2 \cdot \ln(2)$

1

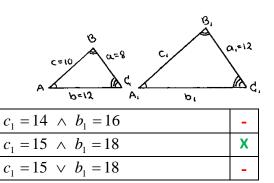
$(a+b)\cdot(a-b) = a^2 + b^2$	-
$(a+b)\cdot(b-a) = a^2 - b^2$	-
$(-a-b)^2 = a^2 + b^2 + 2 \cdot a \cdot b$	Χ

3

$\frac{\ln(7)}{\ln(8)} = \frac{7}{8}$	-
$\log(1) = 0$	X
$\log(5) = 10^5$	-

$(\sqrt{1+x})^2 = 1+x$	X
$(\sqrt{1+x})^2 = 1 + x^2 + 2x$	-
$\sqrt{\left(1+x\right)^2} = 1+x$	-

Х


_

5

You can multiply a fraction by a number	
by multiplying the numerator and the	
denominator by the number	
You can multiply a fraction with a fraction by	-
multiplying with the inverse fraction	
Dividing the numerator and the	
denominator with the same number $(\neq 0)$	Х
doesn't change a fraction	

 $\overline{b+b+b+b} = b$ _ b+b+b $\frac{a+b}{a+b} = \frac{-a-b}{a+b}$ a-b b-aХ $a^5 \cdot a^3 \cdot a^{-2}$ = a $(a^2)^3$ -

7

9

$$y = k \cdot x \qquad k \neq 0$$

x og y are proportional	Χ
x og y are inversely proportional	•
x og y are linear dependent	Χ

10

$$f(x) = 8 \cdot a^x \text{ og } T_2 = 3$$

Ċ.

The length of the hypotenuse is 12

The length of the hypotenuse is $\sqrt{12}$

The length of the hypotenuse is $\sqrt{80}$

a=8

-

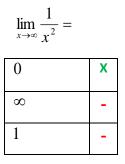
-

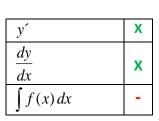
Х

f(0) = 8 og f(6) = 32	X
f(0) = 0 og f(1) = 8	-
f(3) = 16 og f(-3) = 4	Χ

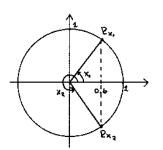
1		
1		

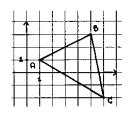
$c \cdot d = 0$ means that either c or d equals	
0 , or that they both equal 0 .	Χ
It is forbidden to multiply an equation by $0.$	Χ
Squaring an expression means taking the	-
square root.	


$-(-1)^4 \cdot (-1) \cdot (-1)^3 \cdot 1 = 1$	-
$2 \cdot 3^{2x} = 2 \cdot 9^x$	X
$2 \cdot 3^x = 6^x$	-
$\sqrt[3]{-8} + 4 \cdot 2^{-2} = -1$	X


The range of a logarithm function is the set	
of all real numbers.	Χ
The domain of a logarithm function is the set	-
of all real numbers.	
$f: f(x) = x^2 - 17x - 50$	
has a global minimum	X

$(\ln(x)) = \frac{1}{x}$	x
$(e^{3x})'=e^{3x}$	-
$\left(\frac{1}{x}\right)' = \frac{1}{x^2}$	-




f'(x) is equal to

$\cos(x_2) = 0,6$	X
$\tan(x_1) = \tan(x_2) = 0,6$	-
$\sin(2\pi + x_2) = 0.6$	-
$\cos(x_1 - 2\pi) = 0.6$	X

$\vec{AB} + \vec{BC} = \begin{pmatrix} 5\\ -3 \end{pmatrix}$	x
$\vec{BA} + \vec{AC} = -\vec{CB}$	X
$ \vec{AB} + \vec{BC} = \vec{AC} $	-

19

An equation of a line in a plane can be determined using:

a point on the line and a direction vector of	Х
the line	
a point on the line and a normal vector of	Х
the line	
2 points on the line	Х

21

A plane α is given by 2x - 3y + 4z + 8 = 0.

$\begin{pmatrix} -4 \\ 6 \end{pmatrix}$ is a normal vector of the plane	
	X
$P(7,0,-\tfrac{11}{2}) \in \alpha$	X
The plane intersects the z-axis in	-
(-1,2,0)	

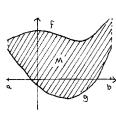
23

A parametrization of a line in space can be determined by use of:

20

For 2 perpendicular lines in a plane it is known that

the determinant of their direction vectors is 0	•
the dot product of their direction vectors is 0	X
the dot product of their normal vectors is 0	X
the determinant of their normal vectors is 0	-


22

Calculating an angle between 2 planes can be done by

calculating an angle between 2 direction	-
vectors of the planes	
calculating an angle between 2 normal	X
vectors of the planes	
calculating the determinant between 2	-
normal vectors of the planes	

24

The area of M equals:

a point on the line and a direction vector of	X
the line	
a point on the line and a normal vector of	_
the line	
2 points on the line	Х

$\left[F(x) - G(x)\right]_a^b$	X
$-\int_{b}^{a}(f(x)-g(x))dx$	x
$\left[f(x) - g(x)\right]_a^b$	-

25

$$\int (x^3 - \sin(x) + e^{2x}) dx = 3x^2 - \cos(x) + 2e^{2x} - \frac{1}{x^2 - \sin(x) + 2} dx = \ln|x| + \cos(x) + 2x + c$$

$$\int \frac{4x^2 - 3x}{x} dx = 2x^2 - 3x + c$$

$$x$$

26

$$f(x) = 3 \cdot e^{-x}$$
 is

the general solution of the differential	-
equation $y' = -y$	
a particular solution of the differential	
equation $y' = -y$	X
not a solution of the differential	_
equation $y' = -y$	